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Fundamentals of the electrical breakdown time delay studies were laid by Zuber and von
Laue in 1925 [1,2]. Zuber has proven experimentally that the breakdown time delay has a
stochastic nature, while von Laue shown that its distribution is exponential. Exponential
distribution for the statistical time delay was strictly derived by Kiselev [3], starting from a
binomial distribution for the electron occurrence in the interelectrode space. For the transition
from binomial to Poisson and exponential distribution it was implicitly assumed [3] that the rate of
electron production in the interelectrode space (electron yield) Y is small or YPt,/m= p is close
to zero [4]. Here, P is the breakdown probability of one electron to cause breakdown, tg is the

statistical time delay and m is the number of subintervals within t; in order to obtain at most one

electron occurrence in each subinterval (i.e. independent accidents and avalanches).
However, if neither p nor 1— p is too close to zero, Gaussian distribution is obtained as a

limiting case of binomial distribution [4]. In paper [4] it was shown experimentally and
theoretically how the sum of binomial distributions for the electron occurrence goes to Gauss-
exponential and Gaussian distribution for the statistical breakdown time delay in nitrogen, and
also confirmed in neon [5]. Thus, beside of independent avalanches (in time) as treated in [1,2,3]

(t_d ~ E >> t_f, or YP <<1/ E), we have obtained dependent avalanches, also. Namely, if a new
initiating electron occurred before the formative time initiated by the preceding electron is finished
(YP=>1/ t_f), the avalanches are dependent (correlated) leading to the Gauss-exponential and
Gaussian distribution for t, and the correlation coefficient between t, and t, is determined [5,6].

The measurements were carried out on a gas tube made of borosilicate glass with volume of
V ~300 cm® and the cylindrical copper cathode (gold plated by vacuum deposition) with
diameter D=6 mm and gap d =6mm. The tube was filled with research purity neon at the
pressure of 6.6 mbar (Matheson Co. with a nitrogen impurity below 1ppm). The static
breakdown voltage was U, =265V . The time delay measurements were carried out at glow
current |, =45pA, glow time t =1s, afterglow period t=40ms and at different working
voltages U . More details about the experimental procedure can be found in [4,5].

The breakdown probability P of one electron to cause breakdown that will be applied here,

was theoretically derived by Wijsman [7], considering the sequences of electron avalanches and
for nonattaching gases it is given by:

1-1/q, if g>1
P_

0, if g<l1
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where q=vyexp(ad), y is the effective electron yield and o is the electron ionization

coefficient. Experimental determination of the breakdown probability P is given in [8] by
relation:

PU)=L" /L) @)
where t_S is the statistical time delay and t_ssv its saturation value at high voltages, since at high
voltages E - t_S ¥ and P —1. When t, can be neglected, then t_d ~ t_s >> t_f . The statistical

time delay distribution is exponential, the standard deviations are 6, = 6, >> 6, and t_sz 1/YP

[8,9]. Improved formulas for the breakdown probability P under the influence of field-assisted
electron emission and surface charges on the cathode surface were derived in [10].

For dependent avalanches, E < E (YP=1/ E), t, should be subtracted from t_d and

equation (2) modified, according to results in [4,5,6]:
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where E: t [9]. Also, o, =G, >>0, is still valid [4,5,9], t_S: kG, (x=1.7) [5] and

d min

P=t / E(U Y~ o0,” /6,(U) is shown for comparison with eq. (3) (Fig. 1).
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Fig. 1: A) Statistical time delay (m,*), formative time delay (A) and the breakdown
probability (o,*, solid line — Wijsman’s formula (1)). B) Standard deviation and distributions.
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