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In traditional low-pressure plasma modelling, the transport of the species of interest is de-
scribed relative to a stationary and uniform background gas, like helium or argon. The transport
flux densities are commonly modelled with a Fick-like diffusion term, augmented with a drift
contribution for the charged species.

Some modern applications share the non-thermal nature with those discharges, but operate
at much higher pressures and are created in flowing compound gases, like air. Examples are the
discharges that are presently being considered for biomedical plasma applications. As a result, gas
heating can play a role and the concept of a static, abundant background gas may no longer apply.

Consequently, existing low-pressure gas discharge models cannot be used unaltered for the
simulation of such atmospheric discharges. In this contribution, we will provide an overview of the
challenges involved in the successful numerical simulation of such plasmas. The discussion will
zoom in on the modelling of the species’ transport fluxes. The conceptual problems of the drift-
diffusion model in flowing plasmas will be explained, followed by a presentation of an alternative
approach, which is based on the Stefan-Maxwell equations. Special attention will be paid to the
numerical aspects of the transport algorithms and the novel discretisation method that we have
developed.

Transport in Multi-Component Fluids
Let us consider a plasma that consists of several species, labelled s, with masses ms, particle
densities ns and species-averaged velocities ~us. The evolution of the species densities is governed
by the particle balances

∂ns

∂t
+∇ ·ns~us = Ss, (1)

where Ss is the net volumetric production rate of species s. If we multiply with ms and define the
species mass densities ρs = msns and mass flux densities ~Js = ρs~us we get

∂ρs

∂t
+∇ · ~Js = msSs. (2)

Since no mass is produced or lost in reactions, summation yields the (mass) continuity equation

∂ρ
∂t

+∇ ·ρ~u = 0, (3)

where we have introduced the mass density and barycentric velocity field through the relations

ρ = ∑
s

ρs, (4)

ρ~u = ∑
s

~Js, (5)

in that order. For a given mass density field ρ, the pressure and barycentric velocity fields can be
calculated from the Navier-Stokes equations and the continuity equation (3).

So far, no significant assumptions have been made, other than that mass densities are addi-
tive, and that mass is conserved in chemical reactions. Most modelling effort goes into the specifi-
cation of the species velocities ~us, which will be discussed below. That said, the treatment above,
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and equation (5) in particular, teaches us an important constraint: whatever recipe we choose for
calculating ~us, the results ought to be such that the species mass fluxes add up to the product of
the mass density and barycentric velocity field.

The species diffusion velocities ~vs are defined as the velocities, measured relative to the
barycentric velocity field,

~vs =~us−~u. (6)

This definition allows us to rewrite the species mass balances as

∂ρs

∂t
+∇ · (ρs~u+ ~Jd

s ) = msSs, (7)

where the diffusive mass fluxes have been introduced as

~Jd
s ≡ ρs~vs. (8)

From the previous relations it is readily found that the sum of the diffusive mass fluxes must
vanish,

∑
s

~Jd
s =~0. (9)

Now, do they?
Let us consider the simplified drift-diffusive model for the particle fluxes in a non-flowing

plasma, where the mass flux densities are given by

ms

(
µs~Ens−Ds∇ns

)
, (10)

where µs is the mobility of species s, ~E the electric field, and Ds the species’ diffusion coeffi-
cient. This expression does not respect any of the constraints above: firstly, the ‘diffusion’ fluxes
−msDs∇ns do not sum up to~0. Secondly, it is not clear how the effect of flow can be incorporated
into the equation. Various studies simply add a ‘flow velocity’ —whatever that may be— to the
drift velocity, to arrive at

ms

(
(~u+µs~E)ns−Ds∇ns

)
, (11)

but again this is not consistent with the mass continuity equation (3).

The Stefan-Maxwell Equations
A more systematic approach is to use the Stefan-Maxwell equations, which establish relations
between pairs of diffusive velocities,

∑
p

fsp(~vs−~vp) = ~ds, (12)

where ~ds are the driving forces and the friction coefficients are given by fsp = nskTsnpkTp/p2Dsp,
where the Dsp are the binary diffusion coefficients and k is Boltzmann’s constant. If we consider
one particular spatial component of all vectors, and bundle the component values for all species in
‘vectors’ like v, we get the relation

Fv = d, (13)

where the friction matrix F is a symmetric matrix with elements

Fsp =

{
∑p6=s fsp if s = p,
− fsp if s 6= p.

(14)

Since the row (and column) sums of F vanish, the matrix cannot be inverted. The system of
equations must be augmented with the constraint that the diffusive mass fluxes add up to 0. This
can be done —and has been done by various authors— by simply replacing one of the Stefan
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Maxwell equations with equation (9). The result is a non-symmetric and possibly ill-conditioned
system; in particular when the species that has been singled out has a low mass fraction. Therefore
we recommend against this practice.

Instead, Giovangigli [1] has shown that a well-behaved system is obtained by incorporating
the constraint (9) by adding a multiple of ys ∑p ypvp = 0 to each equation, where ys = ρs/ρ is the
mass fraction of species s. The regularised friction matrix can be written as

F̃sp = Fsp +αysyp, or F̃ = F+αy⊗y, (15)

where α is an arbitrary positive value, best chosen to be equal to a typical value of Fii. The modified
system is invertible and the diffusion velocities are obtained as

v = F̃−1d. (16)

In the presence of ordinary, pressure, thermal and forced diffusion, the driving forces d can be
expressed as a linear combination of the mass fractions and their gradients [1]. If we denote the
components of the gradient of y as y′, we may write

d = Ay+By′ (17)

and arrive at
v = F̃−1 (Ay+By′

)
. (18)

By left-multiplying with the diagonal matrix diag(ρs) that contains the species’ mass densities we
obtain the diffusive mass fluxes J. By adding the component of the convective mass fluxes of the
species, ρsu = ρuys, we find that the (total) mass fluxes can be written as

J = Cy+Dy′, with C = diag(ρu)+diag(ρs)F̃−1A and D = diag(ρs)F̃−1B. (19)

Optionally, an ambipolar constraint can be incorporated in the system of equations, and also mag-
netised plasmas can be dealt with without essentially altering the structure of this equation. We
will not elaborate on these possibilities in this text.

Discretisation and Solution of the System of Equations
From equation (19) we see that the mass flux density of an individual species s is given by

Js = ∑
p

(
Cspyp +Dspy′p

)≡∑
p

Jsp. (20)

When solving the mass balance equation (2) in a control volume setting, we need to express the
flux on a control volume boundary e (east), say, in terms of the values of y in the adjacent nodal
points, here denoted as C and E. It is well-established that an ill-chosen discretisation scheme,
like the central-difference scheme, leads to non-physical solutions when the flux is advection-
dominated (high Péclet numbers). The Scharfetter-Gummel scheme does not have this drawback,
and is therefore commonly used in the simulation of convection-diffusion phenomena.

Applying the classical Scharfetter-Gummel scheme to each term Jsp separately seems to be
a reasonable approach at first sight and would lead to the flux approximation [2]

Jsp(xe)
.= ∆x−1D[B(−Psp)yp(xC)−B(Psp)yp(xE)], (21)

where B(P) = P(eP−1)−1 is the Bernoulli function, and Psp = ∆xD−1
sp Csp is the grid Péclet number

that characterises the importance of convection over diffusion, with ∆x = xE − xC. The left graph
in Fig. 1 shows the results of applying this scheme to a mixture of argon and hydrogen gas without
source terms, in the presence of a flow field. The boundary fractions of argon and hydrogen are
fixed. The results are dramatic: for small numbers of grid points (high Péclet numbers), non-
physical oscillating results are obtained.
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Fig. 1: The argon mass fraction in a mixture of argon and hydrogen with Dirichlet bound-
ary conditions without sources. The scalar exponential scheme (left) yields unphysical non-
monotonic results for large Péclet numbers, whereas the coupled scheme (right) is well-
behaved unconditionally.

Obviously, our techniques for solving individual convection-diffusion equations fall short
when applied to coupled equations. Therefore, a novel discretisation scheme has been developed.
In this (coupled) homogeneous flux scheme [3, 2], the expression for the boundary flux at the
interface point e between C and E is obtained as the analytical solution of the equation J′(y) = 0,
subjected to the Dirichlet boundary conditions y(xC) = yC and y(xE) = yE . In the derivation of the
scheme it is assumed that the convection and diffusion matrices C and D are constant in the interval
[xC,xE ]. These assumptions, and the derivation of the scheme are analogous to those leading to the
usual Scharfetter-Gummel scheme, but instead of a scalar Péclet number, a Péclet matrix P occurs
in the final results,

P = ∆xD−1C, (22)

and the flux is given by
Je

.= ∆x−1D [B(−P)yC−B(P)yE ] , (23)

where B(P) = P(exp(P)− I)−1 is the matrix Bernoulli function. Note that the scheme has exactly
the same mathematical structure as the original Scharfetter-Gummel scheme, the difference being
that scalar algebra has made way for expressions involving matrices. The second graph in Fig. 1
shows that the novel scheme gives realistic results even for limited numbers of grid points (high
Péclet numbers). The mathematical proof that this is always the case is beyond the scope of the
present text; for details we refer to Refs. [2] and [3], which also present a rigorous derivation.

Summary
Atmospheric plasmas of present interest require that the drift-diffusion concept originating from
low-pressure plasma physics is revised to take into account the effects of gas heating, flow and,
possibly, the absence of a dominant, static background gas. This requires, among other things,
that the species transport is modelled using a self-consistent approach, for example based on the
Stefan-Maxwell equations. In the present work we have discussed the advantages of this approach,
and elaborated on the numerical do’s and dont’s when this strategy is used.
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